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 Abstract: The topic of wealth and money distribution attracts great 
attention of economists, as well as researchers from other scientific fields, 
such as statistical physics and econophysics. An increasing number of 
models and simulations are being created in order to understand the 
process of wealth distribution and reaching the steady state of the 
distribution system. Also, the number of papers dealing with analysis and 
determining the distribution proportion is constantly growing, and, unlike 
the previous years, when the Pareto principle was “80-20”, today that 
principle could be “90-10”and even “90-20”. In this paper we present an 
agent-based simulation model derived from econophysics that describes 
the dynamics of wealth distribution. Two models of exponential function 
are tested: a one-phase model that uses the Newton’s law of cooling and a 
two-phase exponential function model. We found that exponential 
decreasing function adequately described the dynamics of wealth 
distribution, especially in the models without the possibility of borrowing 
money, and the validity of the Pareto principle “80-20” in these models 
could be confirmed. 
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1. Introduction 

In economics, the state of the economic system in which supply of goods by 
producers equals demand for goods by consumers on every market at any point of 
time is considered as equilibrium. The equilibrium of a competitive market can be 
studied from a partial or general equilibrium perspective. Analysing economic 
equilibrium from partial perspective implies considering one market and only direct 
effects, while assuming that indirect and effects from other markets can not affect 
interactions among participants on observed market. On the other hand, the general 
equilibrium considers the whole economy as a closed system of interdependent 
markets and variety of economy-wide interactions affected by direct, indirect and 
induced effects. Since it is commonly assumed that all market participants own 
identical initial wealth and behave identically in the observed period, the 
characteristics of wealth distributions are not considered significant for competitive 
economy equilibrium. However, distribution of wealth can have influence on 
dynamic evolution of GDP per-capita in the long-term period (Sorger, 2000). 

Considering the fact that the distribution of earnings and wealth in most countries 
is becoming notably unequal, the interest in the various models that can generate the 
statistical properties of earnings and wealth distributions has increased (Hubmer et 
al., 2016). In addition to an empirical analysis of the current state and the problem 
of uneven distribution of wealth, numerous models are created, which can verify the 
process of evolution and the formation of the equilibrium state in the allocation of 
wealth. The advanced computer technology enabled researchers to study this issue 
in a computational agent-based framework, which can identify determinants of 
wealth distribution in economies (Lux, 2005). Xiong et al. (2017) simulated the 
creation of money and its circulation model in an economy, when there was a 
possibility of borrowing. Drăgulescu and Yakovenko (2001) simulated distribution 
of money, income and wealth and they concluded that the distribution could be 
described by the Boltzmann-Gibbs model. However, income and wealth 
distributions are often described as positively skewed and thick-tailed (Wang, 2007; 
Benhabib & Bisin, 2018). The Pareto power-law distribution is a consequence of the 
fundamental characteristics of the capital market, its efficiency and wealth 
accumulation (Klass et al., 2006). The Pareto Principle is a rationalized expression 
of the mathematics behind the Pareto distribution, and it states that in the cases of 
most phenomena 80% of outputs are produced by 20% of inputs or even “90-10” or 
“90-20” (Dunford et al., 2014). 

According to Dixon (1990) three basic principles of equilibrium need to be 
fulfilled: (1) behaviour of agents is consistent, (2) no agent has the initiative to 
change their behaviour, and (3) the equilibrium is the result of a dynamic process. 
Based on these principles and using the agent-based simulation model, we model the 
distribution of wealth between the agents. Assuming that the agent-based 
modeling could simulate actions and interactions between the agents, as well as 
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their effects on the system by using the law of cooling, the aim of this research is 
to test the performance of two exponential functions in revealing the dynamics 
of change in the relationship between the wealth proportions of the poorest 80% of 
the population and 20% of the richest. Therefore, in the second part of the paper the 
agent-based modelling will be described, while the implemented models will be 
presented in the third part of the paper. The achieved results will be presented in the 
fourth part. The paper concludes the performance of the models in the last part.  

2. The agent-based models 

Agent-based modelling (ABM) and simulations (ABMS) are relatively new 
paradigms in the computer modelling and simulation of complex systems (Macal & 
North, 2010). The main component of the model is agent, whose behaviour is 
modelled individually considering that each agent is independent of others. If all the 
agents have relatively similar characteristics, such a system can be specified as a 
system with homogeneous agents. However, complex systems usually consist of 
components of different properties, so the most adequate models for modelling such 
systems are models with heterogeneous agents. In the process of system modelling, 
ABM uses the bottom-up approach (Wooldridge, 2009). Firstly, the basic 
components - agents, are modelled, and then, hierarchically, groups of agents and 
their relationships in the groups, as well as the environment and the features of 
interaction between agents and groups of agents and the environment. The modelling 
of the interactions between the agents, on one hand, and their interactions with the 
environment, on the other, connects the micro-level of agents with the macro-level 
of the environment and the system (Wooldridge, 2009; Wilensky & Rand, 2015). 
Specifically, out of these interactions a complex behaviour of agents evolves and it 
cannot be induced from individual characteristics of agents. 

Wide acceptance of ABMS and its advantage over classical techniques of 
mathematical modelling (equation-based modelling) may be attributed to the 
following properties (Michel et al, 2018; Leys 2019): (a) the ABM is a flexible model 
that can be easily modified by adding new properties to the agents, environment and 
interactions; (b) ABMS has precise control over the flow of the simulation; (c) ABM 
does not exclude the individual features, behaviour, and the interactions of the 
system components; (d) it is relatively easy to create artificial, computer, micro-
world with the ability to control all the features of the model and support a wide 
variety of simulation. 

Trichet, the former President of the European Central Bank, referred to the 
importance of ABMS approach for modelling complex economic and financial 
system (Trichet, 2010): “When the crisis came, the serious limitations of existing 
economic and financial models immediately became apparent ... Macro models 
failed to predict the crisis and seemed incapable of explaining what was happening 
to the economy in a convincing manner ... We need to entertain alternative 
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motivations for economic choices. Behavioural economics draws on psychology to 
explain decisions made in crisis circumstances. Agent-based dispenses with the 
optimization assumption and allows for more complex interactions between agents. 
Such approaches are worthy of our attention”. 

Regarding the ABMS approach, we consider the simplest example of a closed 
economy. In this economy, there are a total of N number of economic agents that 
have a total amount of money M. In this model, the production of new goods or 
emissions of additional amounts of money are not allowed, but the agents trade by 
pre-defined rules. Let the agent i in a given time t has the amount of money mi(t). 
When the two agents trade, a law of conservation of money applies, i.e. the total 
amount of money that two agents would possess after the trade would be equal to 
the total amount of money they had before the trade, which could be explained in the 
following manner: 

𝑚௜ሺ𝑡ሻ ൅ ∆𝑚 ൌ 𝑚௜ሺ𝑡 ൅ 1ሻ    (1) 

𝑚௝ሺ𝑡ሻ െ ∆𝑚 ൌ 𝑚௝ሺ𝑡 ൅ 1ሻ    (2) 

𝑚௜ሺ𝑡ሻ ൅ 𝑚௝ሺ𝑡ሻ ൌ 𝑚௜ሺ𝑡 ൅ 1ሻ ൅ 𝑚௝ሺ𝑡 ൅ 1ሻ   (3) 

where Δm represents the value of the realized transaction.  

In this model lending is not allowed, so after each trade agents will have the 
amount of money that is greater or equal to zero, i.e.mi(t) ≥ 0, while the total amount 
of money in the economy is constant, i.e. ∑ 𝑚௜

ே
௜ୀଵ ൌ 𝑀. Since the requirement of 

maintaining the stable quantity of money is fulfilled (t→∞), it can be applied that 
probability that the agent has an amount of money m is 

𝑃ሺ𝑚ଵሻ𝑃ሺ𝑚ଶሻ ൌ 𝑃ሺ𝑚ଵ ൅ 𝑚ଶሻ   (4) 

Agents who have 0 quantity of money cannot buy goods from other agents, but 
can receive the money from the agents for the delivery of their goods. 

The authors of many studies confirmed that the probability distribution and 
cumulative probabilities for these models can be described by the Boltzmann-Gibbs 
distribution usually applied in physics (Yakovenko, 2010). A fundamental law of 
equilibrium in statistical physics is the Boltzmann-Gibbs law, which states that the 
probability P(ε) to find a physical system or subsystem with the state of energy ε is 
determined by the following exponential function (Yakovenko, 2010): 

𝑃ሺ𝜀ሻ ൌ 𝑐 ∙ 𝑒ି
ഄ
೅    (5) 

where c represents a normalization constant, and T is a temperature that is equal to 
the average energy per particle. The probability P(ε) will not be more than 1. The 
presented equation will function in the system if the law of conservation of energy 
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applies, i.e. the sum of the energy in the system, which is constant, is equal to the 
sum of the individual particles’ energy, as well as that the probability that the particle 
has the energy equal to the sum of energies’ of two particles is equal to the product 
of probabilities that particles have the specified energy. Drăgulesku and Yakovenko 
(2010) used the Boltzmann-Gibbs distribution to describe the distribution of money 
between agents in the following manner: 

𝑃ሺ𝑚ሻ ൌ 𝑐 ∙ 𝑒ି
೘
೅     (6) 

where m represents the amount of money that each agent has, T is the „money 
temperature “, which is equal to the average value of the money that each agent has. 
Drăgulesku and Yakovenko (2001) have shown that this model can be applied in 
order to describe the distribution of money and income in USA and UK. Based on 
the derivation of the distribution function it can be concluded that the normalization 
constant equals to the reciprocal value of money temperature. 

The basic model is not realistic, because there is no world economy where trade 
is conducted only with a certain amount of money, without the possibility of 
borrowing. This model is very difficult to achieve, because it would imply that 
economic agents have to provide a sufficient amount of money to be able to engage 
in the process of trade. The model may be closer to reality if the agents are allowed 
to borrow money. 

Therefore, in order to make this model a closer representation of reality, we 
introduce a new term – the agents can borrow money from the bank without interest. 
In our model agents are allowed to borrow a maximum amount of their initial amount 
of money in order to trade, but not to create new products. During the observed 
process of trading not all agents will exploit fully the right to borrow money, but 
only the ones who need additional amounts of money to carry out the trade. In 
mathematical terms each of the agents will have an additional amount md of money 
which they can use. Agents on their balance can have a negative value, but it will 
not go below overdraft, i.e. mi(t) ≥ -md. In this model, the total amount of money 
available in the economy system is equal to: 

𝑀 ൌ 𝑀ௗ ൅𝑀௜௡    (7) 

what means that the amount of money which agents can use (M) is equal to the 
sum of additional amount of money (Md) and initial amount of money (Min). The law 
of conservation of money described by equations 1, 2 and 3 applies in this case, only 
now the value that an agent can have on their account can be negative. 

In this model temperature of money will increase, because there will be 
additional amount of money in the economy that will be much higher than the initial 
amount, leading to an increase in the value of this parameter. 
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3. Model description 

In our analysis we use the exponential decay function to determine the dynamics of 
the distribution of wealth. We analyse the dynamics of change in the relationship 
between the wealth proportions of the poorest 80% of the population and 20% of the 
richest. We expect that this function will best describe dynamics of change in order 
to achieve the equilibrium level, which is called the Pareto principle. The analysis 
applies a single-phase function that represents Newton’s law of cooling in physics 
and a two-phase exponential function that contains two “cooling” processes – one 
describing a short-term effect and the other describing a long-term effect. 

When the warm bodies are left in the open, they gradually begin to cool down. 
Isaac Newton discovered that the dynamics of cooling is proportional to difference 
of body temperature in relation to the temperature of surroundings. This observation 
is called Newton’s law of cooling. It was not known whether Newton tried to 
describe this phenomenon theoretically, but this conclusion arose experimentally 
(Desai, 2006, pp. 51). 

Newton’s law of cooling mathematically can be described as a change in the 
body temperature by time in the following manner: 

ௗ்

ௗ௧
ൌ െ𝑘 ∙ ሺ𝑇 െ 𝑇௢ሻ    (8) 

where T represents the temperature of the object under observation at time point, t is 
the time point, To represents the temperature of the surroundings and k is the cooling 
constant which indicates the dynamics of the body cooling. The reciprocal value of 
the cooling constant is called the time cooling constant. It is equal to the time 
required that the initial temperature difference falls e times assuming the constant 
temperature environment. The smaller the value of the time cooling constant, the 
faster the cooling down process of the body is. By solving the differential equation 
(8) we get: 

ௗ்

்ି ೚்
ൌ െ𝑘 ∙ 𝑑𝑡               (9) 

then the previous equation integrates 

න
𝑑𝑇

𝑇 െ 𝑇௢
ൌ െ𝑘 ∙ න𝑑𝑡 

lnሺ𝑇 െ 𝑇௢ሻ ൌ െ𝑘 ∙ 𝑡 ൅ 𝐶 

𝑇 െ 𝑇௢ ൌ 𝑒ି௞௧ ∙ 𝑒௖ 

𝑇 െ 𝑇௢ ൌ 𝐴𝑒ି௞௧   (10) 
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The equation (10) defines the final form of the formula, which describes the 
cooling and heating systems of the body. In the equation 𝑇 െ 𝑇௢ ൌ 𝑇௥௘௟ represents 
the relative temperature, i.e. the difference between body temperature and 
surroundings temperature. Parameter А is constant, i.e. 𝐴 ൌ 𝑒௖. If the value of the 
constant of proportionality (k) is less than zero then this parameter describes the 
process of the body cooling down in the surroundings, whose temperature is To until 
the temperature of the body is equal to the temperature of the surroundings. If the 
value of the coefficient of proportionality is greater than zero, then it describes the 
process of the body warming up in time (Lewis, 2010, pp. 107).  

This model can be further developed depending on whether the surroundings 
temperature is constant or variable. In our study, we use a model with a constant 
ambient temperature, and a parameter A can be expressed as 𝐴 ൌ 𝑇௥௘௟௢ ൌ 𝑇௣ െ 𝑇௢

௣, 
i.e. the initial temperature difference between the body and the surroundings when 
time equals zero. The final form of the model is as following: 

𝑇 െ 𝑇௢ ൌ ሺ𝑇௣ െ 𝑇௢
௣ሻ𝑒ି௞௧   (11) 

Newton’s law of cooling today attracts great attention of many physicists, who 
deal with the problem of heat conductivity (Vollmer, 2009), as well as economists and 
econophysicists, who are searching a possible application of this law in the economy. 
They are primarily concerned with the application of this model to determine the long-
term value of the moment of movement of economic indicators, which could serve as 
additional indicators of successful economic policy and make good business decisions. 
Michael Lewis (2010) in his work dealt with the problem of application of Newton’s 
law of cooling to describe the dynamics of inflation in the long term, i.e. for predicting 
the movement of the CPI index, as an indicator of inflation. The author, based on the 
model, described dynamics of the CPI in the USA for the period from 1913 to 2008 
and predicted the values for the first six months in 2009. 

Zarikas, Christopoulos and Rendoumis (2009) described the application of 
Newton’s law of cooling in the dynamics of stock indices of the Athens Stock 
Exchange for several periods of trading. Gkranas, Rendumis and Polatoglu (2003) 
in their paper described the use of Newton’s law of cooling in the case of stock 
market indices of the Athens and Lisbon exchange markets and introduced the 
analogy between trading and thermodynamic processes, i.e. processes of rapid 
heating and cooling to trading on the stock exchange. 

The two-phase exponential decreasing function has two components that affect the 
change of values: short and long term. Both phases, short and long, affect the function 
value simultaneously, not separately. The function can be used in many different 
models in chemistry and biology, such as for the determination of the dynamics of the 
recombination of electrons when observing mutation (Chin et al. 2013) or in the field 
of photochemistry and photobiology for dynamic analysis of delayed fluorescence (Li 
et al., 2007). The mathematical model is presented in the following manner: 
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𝑦 ൌ 𝑦଴ ൅ 𝐴ଵ𝑒
ି
ೣ
೟భ ൅ 𝐴ଶ𝑒

ି
ೣ
೟మ    (12) 

where yo  represents the observed value for 𝑥 → ∞, A1 and A2 are amplitudes and t1  
and t2  are time constants. 

4. Results and discussion 

Based on the application of the above described agent-based model, the trade 
simulations are carried out between 300, 600 and 1,000 agents. The agent-based 
model is developed in the Netlogo (Wilensky, 2020) programming language and 
development environment, version 6.1.1. The Netlogo is a tool that is often used 
when conducting ABMS. 

Each agent at the beginning of the simulation gets 1,000 cash units. Moreover, 
when implementing the simulation, there are established trading rules as follows: 

 the first option – the agents have limited amount of money that they could 
exchange among themselves (the amount of 1, 5 or 10 monetary units), but 
without the possibility of borrowing, 

 the second option – the agents could exchange a randomly selected amount of 
money between 1 and 10 monetary units between themselves, but without the 
possibility of borrowing, 

 the third option – the agents could exchange a randomly selected amount of 
money between 1 and 10 monetary units between themselves, but with the 
possibility of borrowing money up to the initial amount of money. 

In the following part of the paper we present the results obtained by the analysis of 
the above trading options. The analyses were conducted in the programme Origin 9. 

Figure 1 - Fitted functions for N=300, fix=1  
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Source: Authors’ calculation 
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Figure 2 - Fitted functions for N=300, fix=5 
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Source: Authors` calculation 

Figure 3 - Fitted functions for N=300, fix=10 
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Figure 4 - Fitted functions for N=600, fix=5 
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Function 5 - Fitted functions for N=1000, fix=5 
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Source: Authors’ calculation 

Based on the figures 1 to 5, it can be concluded that the analysed functions describe 
the data changes in an adequate manner. Although, the two-phase exponential function 
is better fitted in relation to Newton’s law of cooling and better describes the dynamics 
of change in the proportion, the problem remains at the initial part (in figure 1 up to 
the first 100 periods, in figure 2, 4, and 5 up to the 10 periods, while in figure 3 the 
dynamics follows the trend, but there is a difference between the data and function), 
where a lot of function values differ from the real values. In the last period, when the 
system reaches a stable phase (equilibrium) both functions have similar values, i.e. 
there is a 1% deviation between the values of the two functions.  
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Table 1 and 2 shows the results of fitting presented on the five graphics, which 
are analysed in the case of the first trading rule option. 

Table 1 - The values of the parameters of Newton’s law of cooling function  

N=300, fix=1   
Parameter Value Error 

T 1.09639 4.18889E-4 
To 3.02525 0.00237 
K 2.92236E-4 5.6181E-7 
R2 0.96609  

N=300, fix=5   
Parameter Value Error 

T 0.91266 3.38642E-4 
To 2.6204 0.00811 
K 0.00364 2.46051E-5 
R2 0.68763  

N=300, fix=10   
Parameter Value Error 

T 0.94397 3.35655E-4 
To 2.91165 0.01918 
K 0.01965 2.69483E-4 
R2 0.34925  

N=600, fix=5   
Parameter Value Error 

T 0.94309 2.73855E-4 
To 2.79981 0.00608 
K 0.00487 2.27746E-4 
R2 0.87778  

N=1000, fix=5   
Parameter Value Error 

T 0.94474 4.90535E-4 
To 2.83400 0.00665 
K 0.00490 2.48876E-5 
R2 0.94012  

Source: Authors’ calculation 

According to the obtained results, we can claim that the function adequately 
describes the dynamics of the proportions’ change in time, except in the case of N = 
300, fix = 10, where the value of determination coefficient is 0.35. The scenario in 
which small number of agents are rapidly exchanging the large amount of money 
“cools” the system and does not lead to equilibrium. As this model does not allow 
the option to borrow money, much of the agent population runs out of money too 
quickly. The ultimate values of the body temperature in all cases revolve around 
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1.0±0.1, which indicates that the Pareto principle “80-20” can be applied to this 
model, i.e. 20% of the population own 80% of the total resources. 

Table 2 - Values of parameters of the two-phase exponential function 

N=300, fix=1   
Parameter Value Error 

yo 1.06164 3.16092E-4 
A1 1.09513 0.00348 
t1 6,106.42031 18.99261 
A2 1.32656 0.00358 
t2 990.25383 4.88224 
R2 0.99083  

N=300, fix=5   
Parameter Value Error 

yo 0.90784 3.13252E-4 
A1 0.60322 0.00829 
t1 863.1647 12.10255 
A2 1.82367 0.01438 
t2 78.07091 1.18575 
R2 0.75101  

N=300, fix=10   
Parameter Value Error 

yo 0.9437 3,33265E-4 
A1 1.27281 0,03598 
t1 76.8999 2,02702 
A2 1.59504 0,05487 
t2 8.42707 0,5655 
R2 0.36071  

N=600, fix=5   
Parameter Value Error 

yo 0.94134 2.42804E-4 
A1 1.17436 0.01041 
t1 318.57474 2.62112 
A2 1.43549 0.01433 
t2 36.57485 0.72719 
R2 0.90624  

N=1000, fix=5   
Parameter Value Error 

yo 0.93145 3.83075E-4 
A1 1.78964 0.00812 
t1 96.73719 0.87049 
A2 0.49051 0.00703 
t2 704.05048 9.24066 
R2 0.97297  

Source: Authors’ calculation 
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Regarding the results presented in table 2, it can be concluded that the function 
appropriately describesthe changes in the proportions in time, except in the case of 
N = 300, fix = 10, wherein the determination coefficient is 0.36. Similar to Newton’s 
cooling model, the small number of agents in this case and the large amount of 
money exchanged too quickly “cool” the system and do not lead to equilibrium. The 
agent-based models based on thermodynamic principles must have a sufficient 
number of agents to adequately describe the target model. The ultimate values 
obtained for the body temperature in all cases revolve around 1.0±0.1, the Pareto 
principle “80-20” applies in this model, i.e. 20% of the population own 80% of the 
total resources. The value of the coefficient of determination obtained using two-
phase exponential function compared to the previous function shows that a two-
phase exponential function better describes the change in the value proportion than 
the function of Newton’s law of cooling, while the proportion values in the 
equilibrium conditions are almost identical. 

Figure 6 - Fitted functions for N=300, rand=10 
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Source: Authors’ calculation 

Table 3 - The values of the parameters of Newton’s law of cooling function 

N=300, rand=10   
Parameter Value Error 

T 1.01138 5.21372E-4 
To 2.91158 0.01454 
K 0.00968 1.05072E-4 
R2 0.63110  

Source: Authors’ calculation 
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In Table 3 we present the values of the model parameters obtained using the two-
phase exponential function, where agents can randomly choose the sum of money 
they want to trade within the range of 1 to 10 monetary units. According to the value 
of the coefficient of determination, we can conclude that the function describes the 
change in the proportion over the time in a satisfactory manner, while the value of 
the parameter T indicates that, in this case, when agents cannot borrow money, the 
Pareto principle can be applied.  

Table 4 - Values of parameters of the two-phase exponential function 

N=300, rand=10   
Parameter Value Error 

yo 1.01085 5.13163E-4 
A1 1.32484 0.04936 
t1 10.66594 0.73043 
A2 1.49518 0.02426 
t2 129.3892 2.16769 
R2 0.64532  

Source: Authors’ calculation 

The values of the parameters obtained by implementation of the two-phase 
exponential function model, where agents can randomly choose the sum of money they 
want to trade with, in the range of 1 to 10 monetary units, are presented in table 4. 
According to the coefficient of determination, it can be concluded that the function 
describes adequately the change of the proportion over the time, while the value of the 
parameter T indicates that in this case (the second trading option) the Pareto principle 
can be applied. Compared to the previous one, this function better describes the 
changes that occur in the system, while the values of proportions, when the system is 
in equilibrium, obtained by both models are nearly identical (the error is 0.05%). 

Figure 7 - Fitted functions for N=300, rand=10, debt 
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Figure 8 - Fitted functions for N=600, rand=10, debt 
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Figure 9 - Fitted functions for N=1000, rand=10, debt 
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The graphs 7 to 9 show the fitted functions of the model that is based on the 
assumption that agents are allowed to borrow money from the banks up to the initial 
amount of money. According to the graphics and indicators of the model presented 
in table 5, it can be stated that Newton’s law of cooling function adequately describes 
the change in the proportion over time, while the value of the parameter T indicates 
that in the equilibrium state the Pareto principle “80-20” cannot be applied. Instead, 
it changes to “90-20”, i.e. 20% of the population own 90% of the total of money of 
that population. 
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Table 5 - The values of the parameters of Newton’s law of cooling function 
N=300, rand=10, debt   

Parameter Value Error 
T 0.26730 7.20156E-4 
To 2.10222 0.00694 
K 0.00263 1.46459E-5 
R2 0.92813  

N=600, rand=10, debt   
Parameter Value Error 

T 0.21775 1.96717E-4 
To 2.04290 0.00416 
K 0.00230 7.48067E-6 
R2 0.88389  

N=1000, rand=10, debt   
Parameter Value Error 

T 0.24221 7.2294E-4 
To 2.23220 0.00773 
K 0.00315 1.78867E-5 
R2 0.92530  

Source: Authors’ calculation 

Table 6 - Values of parameters of the two-phase exponential function 

N=300, rand=10, debt   
Parameter Value Error 

yo 0.25669 3.91201E-4 
A1 1.19902 0.00501 
t1 603.42448 2.85987 
A2 1.83829 0.01069 
t2 44.57593 0.47867 
R2 0.98143  

N=600, rand=10, debt   
Parameter Value Error 

yo 0.21481 1.49491E-4 
A1 1.79817 0.00811 
t1 71.7227 0.62241 
A2 1.02352 0.00466 
t2 794.41294 3.67160 
R2 0.93535  

N=1000, rand=10, debt   
Parameter Value Error 

yo 0.21554 3.34946E-4 
A1 2.02749 0.00577 
t1 94.30033 0.52759 
A2 0.73498 0.00364 
t2 967.87363 5.26021 
R2 0.98933  

Source: Authors’ calculation 
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The values of the model parameters presented in the table 6 indicate that the two-
phase exponential function describes appropriately the proportion change in time, 
while the value of the parameter T indicates that in the equilibrium phase, we cannot 
apply the Pareto principle “80-20” because it changes to “90-20”. In comparison to 
Newton’s law of cooling function, we can state that this function in more adequate 
manner describes the change in the proportion during the time. Moreover, the 
proportion, when the system is in equilibrium phase, are nearly identical in both 
models, the error ranges between 1 and 12%. 

5. Conclusion 

The problem of wealth distribution and its dynamics gathers the great attention of 
researchers, economists as well as physicists, mathematicians and econophysicsts. 
Numerous models, that describe the distribution of wealth, are developed, starting 
from the Pareto model, over the Lorenz curve and Gini coefficient, to econophisics 
models such as the Boltzmann-Gibbs model. In this paper a stochastic agent-based 
model based on the classical kinetic wealth exchange model is implemented. The 
agents are homogeneous and have identical behavior, they randomly interact and 
exchange some of their monetized wealth.  

An interesting problem is the dynamics of change of the wealth distribution 
between the richest people and the rest of the population. According to the 
simulations performed in this study, we found that, after a certain time and certain 
number of interactions between agents, the system itself led to the equilibrium state 
respecting the three basic principles of balance: 

1. Behaviour of agents is consistent - during the process agents respect the 
predefined rules,  

2. No agent has the initiative to change their behaviour – agents continue the 
process of trading according to the specified trading rules, 

3. The equilibrium state is the result a dynamic process, i.e. the exchange processes 
between agents.  

We found that exponential decreasing function might well describe the dynamics 
of wealth proportions, especially in the models without the possibility of borrowing 
money, and the validity of the Pareto principle “80-20” in these models could be 
confirmed. In the models with the possibility of borrowing, the Pareto principles 
changes to “90-20”. We tested two models: the one-phase exponential model in the 
form of Newton’s law of cooling and the two-phase exponential model, and found 
that the two-phase exponential model more adequately described the dynamics of 
the wealth distribution then the other one. 

In addition to the fact that the implemented agent-based model is rather 
simplified and the behavior of the agents can be characterized as unrealistic, the 
research in this paper shows that even such models emerge some macro-level 
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features that are also observed in real economic systems. The research in this paper 
also provides a basis for defining more complex models and draws attention to the 
fact that some complex resultant traits in the agent-based models can occur with 
simple homogeneous agents, for example, lacking the ability to predict, learn, 
maximize profits and other complex traits present in real economic systems. 

Acknowledgement: The paper is a part of the research done with the support of 
the Erasmus+ Programme of the European Union within the project no. 611831-
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DVOFAZNI EKSPONENCIJALNI MODEL  
DISTRIBUCIJE BOGATSTVA 

Apstrakt: Problem distribucije bogatstva i novca zaokuplja veliku pažnju 
ekonomista, ali i istraživača iz drugih naučnih oblasti, kao što je statistička 
fizika i ekonofizika. Kreira se sve veći broj modela i simulacija sa ciljem da se što 
bolje shvati proces distribucije bogatstva i kako se dolazi do ravnotežnog stanja 
sistema distribucije. Takođe, sve veći broj radova se bavi i analizom utvrđivanja 
preovlađujuće proporcije, tako da, za razliku od ranijih godina kada je Pareto 
princip bio “80-20”, danas se na osnovu istraživanja utvrđuje da taj princip glasi 
“90-10”, pa čak i “90-20”. U ovom radu prezentovan je model zasnovan na 
simulaciji za opis dinamike distribucije bogatstva. Testirana su dva modela 
eksponencijalne funkcije, i to: jednofazni model koji koristi funkciju u obliku 
Njutnovog zakona hlađenja i dvofazni model sa eksponencijalnom funkcijom. 
Utvrđeno je da opadajuća eksponencijalna funkcija na adekvatan način opisuje 
dinamiku raspodele bogatstva, posebno u modelima u kojima ne postoji 
mogućnost zaduživanja agenata, kao i to da se u ovim modelima može potvrditi 
Pareto princip “80-20”. 

Ključne reči: distribucija bogatstva, eksponencijalna funkcija, Njutnov zakon 
hlađenja 
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